Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Br Dent J ; 236(4): 329-336, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38388613

RESUMO

Oral cytology is a non-invasive adjunctive diagnostic tool with a number of potential applications in the practice of dentistry. This brief review begins with a history of cytology in medicine and how cytology was initially applied in oral medicine. A description of the different technical aspects of oral cytology is provided, including the collection and processing of oral cytological samples, and the microscopic interpretation and reporting, along with their advantages and limitations. Applications for oral cytology are listed with a focus on the triage of patients presenting with oral potentially malignant disorders and oral mucosal infections. Furthermore, the utility of oral cytology roles across both expert (for example, secondary oral medicine or tertiary head and neck oncology services) and non-expert (for example, primary care general dental practice) clinical settings is explored. A detailed section covers the evidence-base for oral cytology as a diagnostic adjunctive technique in both the early detection and monitoring of patients with oral cancer and oral epithelial dysplasia. The review concludes with an exploration of future directions, including the integration of artificial intelligence for automated analysis and point of care 'smart diagnostics', thereby offering some insight into future opportunities for a wider application of oral cytology in dentistry.


Assuntos
Doenças da Boca , Neoplasias Bucais , Humanos , Inteligência Artificial , Citodiagnóstico/métodos , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/patologia , Odontologia
2.
Bioengineering (Basel) ; 10(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37370601

RESUMO

As COVID-19 pandemic public health measures are easing globally, the emergence of new SARS-CoV-2 strains continue to present high risk for vulnerable populations. The antibody-mediated protection acquired from vaccination and/or infection is seen to wane over time and the immunocompromised populations can no longer expect benefit from monoclonal antibody prophylaxis. Hence, there is a need to monitor new variants and its effect on vaccine performance. In this context, surveillance of new SARS-CoV-2 infections and serology testing are gaining consensus for use as screening methods, especially for at-risk groups. Here, we described an improved COVID-19 screening strategy, comprising predictive algorithms and concurrent, rapid, accurate, and quantitative SARS-CoV-2 antigen and host antibody testing strategy, at point of care (POC). We conducted a retrospective analysis of 2553 pre- and asymptomatic patients who were tested for SARS-CoV-2 by RT-PCR. The pre-screening model had an AUC (CI) of 0.76 (0.73-0.78). Despite being the default method for screening, body temperature had lower AUC (0.52 [0.49-0.55]) compared to case incidence rate (0.65 [0.62-0.68]). POC assays for SARS-CoV-2 nucleocapsid protein (NP) and spike (S) receptor binding domain (RBD) IgG antibody showed promising preliminary results, demonstrating a convenient, rapid (<20 min), quantitative, and sensitive (ng/mL) antigen/antibody assay. This integrated pre-screening model and simultaneous antigen/antibody approach may significantly improve accuracy of COVID-19 infection and host immunity screening, helping address unmet needs for monitoring vaccine effectiveness and severe disease surveillance.

3.
J Surg Res ; 283: 1026-1032, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36914992

RESUMO

INTRODUCTION: Tracheostomy in patients with COVID-19 is a controversial and difficult clinical decision. We hypothesized that a recently validated COVID-19 Severity Score (CSS) would be associated with survival in patients considered for tracheostomy. METHODS: We reviewed 77 mechanically ventilated COVID-19 patients evaluated for decision for percutaneous dilational tracheostomy (PDT) from March to June 2020 at a public tertiary care center. Decision for PDT was based on clinical judgment of the screening surgeons. The CSS was retrospectively calculated using mean biomarker values from admission to time of PDT consult. Our primary outcome was survival to discharge, and all patient charts were reviewed through August 31, 2021. ROC curve and Youden index were used to estimate an optimal cut-point for survival. RESULTS: The mean CSS for 42 survivors significantly differed from that of 35 nonsurvivors (CSS 52 versus 66, P = 0.003). The Youden index returned an optimal CSS of 55 (95% confidence interval 43-72), which was associated with a sensitivity of 0.8 and a specificity of 0.6. The median CSS was 40 (interquartile range 27, 49) in the lower CSS (<55) group and 72 (interquartile range 66, 93) in the high CSS (≥55 group). Eighty-seven percent of lower CSS patients underwent PDT, with 74% survival, whereas 61% of high CSS patients underwent PDT, with only 41% surviving. Patients with high CSS had 77% lower odds of survival (odds ratio = 0.2, 95% confidence interval 0.1-0.7). CONCLUSIONS: Higher CSS was associated with decreased survival in patients evaluated for PDT, with a score ≥55 predictive of mortality. The novel CSS may be a useful adjunct in determining which COVID-19 patients will benefit from tracheostomy. Further prospective validation of this tool is warranted.


Assuntos
COVID-19 , Traqueostomia , Humanos , COVID-19/diagnóstico , COVID-19/terapia , Estudos Retrospectivos
4.
Sensors (Basel) ; 22(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080827

RESUMO

We are beginning a new era of Smart Diagnostics-integrated biosensors powered by recent innovations in embedded electronics, cloud computing, and artificial intelligence (AI). Universal and AI-based in vitro diagnostics (IVDs) have the potential to exponentially improve healthcare decision making in the coming years. This perspective covers current trends and challenges in translating Smart Diagnostics. We identify essential elements of Smart Diagnostics platforms through the lens of a clinically validated platform for digitizing biology and its ability to learn disease signatures. This platform for biochemical analyses uses a compact instrument to perform multiclass and multiplex measurements using fully integrated microfluidic cartridges compatible with the point of care. Image analysis digitizes biology by transforming fluorescence signals into inputs for learning disease/health signatures. The result is an intuitive Score reported to the patients and/or providers. This AI-linked universal diagnostic system has been validated through a series of large clinical studies and used to identify signatures for early disease detection and disease severity in several applications, including cardiovascular diseases, COVID-19, and oral cancer. The utility of this Smart Diagnostics platform may extend to multiple cell-based oncology tests via cross-reactive biomarkers spanning oral, colorectal, lung, bladder, esophageal, and cervical cancers, and is well-positioned to improve patient care, management, and outcomes through deployment of this resilient and scalable technology. Lastly, we provide a future perspective on the direction and trajectory of Smart Diagnostics and the transformative effects they will have on health care.


Assuntos
Técnicas Biossensoriais , COVID-19 , Inteligência Artificial , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Microfluídica , Sistemas Automatizados de Assistência Junto ao Leito
5.
Biosensors (Basel) ; 12(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36005017

RESUMO

As of 8 August 2022, SARS-CoV-2, the causative agent of COVID-19, has infected over 585 million people and resulted in more than 6.42 million deaths worldwide. While approved SARS-CoV-2 spike (S) protein-based vaccines induce robust seroconversion in most individuals, dramatically reducing disease severity and the risk of hospitalization, poorer responses are observed in aged, immunocompromised individuals and patients with certain pre-existing health conditions. Further, it is difficult to predict the protection conferred through vaccination or previous infection against new viral variants of concern (VoC) as they emerge. In this context, a rapid quantitative point-of-care (POC) serological assay able to quantify circulating anti-SARS-CoV-2 antibodies would allow clinicians to make informed decisions on the timing of booster shots, permit researchers to measure the level of cross-reactive antibody against new VoC in a previously immunized and/or infected individual, and help assess appropriate convalescent plasma donors, among other applications. Utilizing a lab-on-a-chip ecosystem, we present proof of concept, optimization, and validation of a POC strategy to quantitate COVID-19 humoral protection. This platform covers the entire diagnostic timeline of the disease, seroconversion, and vaccination response spanning multiple doses of immunization in a single POC test. Our results demonstrate that this platform is rapid (~15 min) and quantitative for SARS-CoV-2-specific IgG detection.


Assuntos
COVID-19 , Idoso , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/diagnóstico , COVID-19/terapia , Ecossistema , Humanos , Imunização Passiva , Imunoglobulina G , Microfluídica , Sistemas Automatizados de Assistência Junto ao Leito , SARS-CoV-2 , Estudos Soroepidemiológicos , Vacinação , Soroterapia para COVID-19
6.
J Med Internet Res ; 23(7): e29514, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34081611

RESUMO

BACKGROUND: The COVID-19 pandemic began in early 2021 and placed significant strains on health care systems worldwide. There remains a compelling need to analyze factors that are predictive for patients at elevated risk of morbidity and mortality. OBJECTIVE: The goal of this retrospective study of patients who tested positive with COVID-19 and were treated at NYU (New York University) Langone Health was to identify clinical markers predictive of disease severity in order to assist in clinical decision triage and to provide additional biological insights into disease progression. METHODS: The clinical activity of 3740 patients at NYU Langone Hospital was obtained between January and August 2020; patient data were deidentified. Models were trained on clinical data during different parts of their hospital stay to predict three clinical outcomes: deceased, ventilated, or admitted to the intensive care unit (ICU). RESULTS: The XGBoost (eXtreme Gradient Boosting) model that was trained on clinical data from the final 24 hours excelled at predicting mortality (area under the curve [AUC]=0.92; specificity=86%; and sensitivity=85%). Respiration rate was the most important feature, followed by SpO2 (peripheral oxygen saturation) and being aged 75 years and over. Performance of this model to predict the deceased outcome extended 5 days prior, with AUC=0.81, specificity=70%, and sensitivity=75%. When only using clinical data from the first 24 hours, AUCs of 0.79, 0.80, and 0.77 were obtained for deceased, ventilated, or ICU-admitted outcomes, respectively. Although respiration rate and SpO2 levels offered the highest feature importance, other canonical markers, including diabetic history, age, and temperature, offered minimal gain. When lab values were incorporated, prediction of mortality benefited the most from blood urea nitrogen and lactate dehydrogenase (LDH). Features that were predictive of morbidity included LDH, calcium, glucose, and C-reactive protein. CONCLUSIONS: Together, this work summarizes efforts to systematically examine the importance of a wide range of features across different endpoint outcomes and at different hospitalization time points.


Assuntos
Algoritmos , COVID-19/diagnóstico , COVID-19/mortalidade , Hospitalização , Adolescente , Adulto , Idoso , Área Sob a Curva , Criança , Pré-Escolar , Diabetes Mellitus , Feminino , Hospitais , Humanos , Lactente , Recém-Nascido , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Morbidade , Cidade de Nova Iorque/epidemiologia , Pandemias , Estudos Retrospectivos , SARS-CoV-2 , Triagem , Adulto Jovem
7.
medRxiv ; 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33300013

RESUMO

Clinical activity of 3740 de-identified COVID-19 positive patients treated at NYU Langone Health (NYULH) were collected between January and August 2020. XGBoost model trained on clinical data from the final 24 hours excelled at predicting mortality (AUC=0.92, specificity=86% and sensitivity=85%). Respiration rate was the most important feature, followed by SpO2 and age 75+. Performance of this model to predict the deceased outcome extended 5 days prior with AUC=0.81, specificity=70%, sensitivity=75%. When only using clinical data from the first 24 hours, AUCs of 0.79, 0.80, and 0.77 were obtained for deceased, ventilated, or ICU admitted, respectively. Although respiration rate and SpO2 levels offered the highest feature importance, other canonical markers including diabetic history, age and temperature offered minimal gain. When lab values were incorporated, prediction of mortality benefited the most from blood urea nitrogen (BUN) and lactate dehydrogenase (LDH). Features predictive of morbidity included LDH, calcium, glucose, and C-reactive protein (CRP). Together this work summarizes efforts to systematically examine the importance of a wide range of features across different endpoint outcomes and at different hospitalization time points.

8.
PLoS One ; 15(12): e0244446, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33382762

RESUMO

OBJECTIVES: Oral potentially malignant disorders (OPMDs) encompass histologically benign, dysplastic, and cancerous lesions that are often indistinguishable by appearance and inconsistently managed. We assessed the potential impact of test-and-treat pathways enabled by a point-of-care test for OPMD characterization. MATERIALS AND METHODS: We constructed a decision-analytic model to compare life expectancy of test-treat strategies for 60-year-old patients with OPMDs in the primary dental setting, based on a trial for a point-of-care cytopathology tool (POCOCT). Eight strategies of OPMD detection and evaluation were compared, involving deferred evaluation (no further characterization), prompt OPMD characterization using POCOCT measurements, or the commonly recommended usual care strategy of routine referral for scalpel biopsy. POCOCT pathways differed in threshold for additional intervention, including surgery for any dysplasia or malignancy, or for only moderate or severe dysplasia or cancer. Strategies with initial referral for biopsy also reflected varied treatment thresholds in current practice between surgery and surveillance of mild dysplasia. Sensitivity analysis was performed to assess the impact of variation in parameter values on model results. RESULTS: Requisite referral for scalpel biopsy offered the highest life expectancy of 20.92 life-years compared with deferred evaluation (+0.30 life-years), though this outcome was driven by baseline assumptions of limited patient adherence to surveillance using POCOCT. POCOCT characterization and surveillance offered only 0.02 life-years less than the most biopsy-intensive strategy, while resulting in 27% fewer biopsies. When the probability of adherence to surveillance and confirmatory biopsy was ≥ 0.88, or when metastasis rates were lower than reported, POCOCT characterization extended life-years (+0.04 life-years) than prompt specialist referral. CONCLUSION: Risk-based OPMD management through point-of-care cytology may offer a reasonable alternative to routine referral for specialist evaluation and scalpel biopsy, with far fewer biopsies. In patients who adhere to surveillance protocols, POCOCT surveillance may extend life expectancy beyond biopsy and follow up visual-tactile inspection.


Assuntos
Técnicas de Apoio para a Decisão , Assistência Odontológica/organização & administração , Neoplasias Bucais/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito/organização & administração , Lesões Pré-Cancerosas/diagnóstico , Biópsia/economia , Biópsia/estatística & dados numéricos , Tomada de Decisão Clínica , Simulação por Computador , Análise Custo-Benefício , Procedimentos Clínicos/economia , Procedimentos Clínicos/organização & administração , Assistência Odontológica/economia , Clínicas Odontológicas/economia , Clínicas Odontológicas/organização & administração , Clínicas Odontológicas/estatística & dados numéricos , Diagnóstico Diferencial , Feminino , Humanos , Expectativa de Vida , Masculino , Pessoa de Meia-Idade , Mucosa Bucal/patologia , Neoplasias Bucais/mortalidade , Neoplasias Bucais/patologia , Neoplasias Bucais/prevenção & controle , Sistemas Automatizados de Assistência Junto ao Leito/economia , Lesões Pré-Cancerosas/patologia , Lesões Pré-Cancerosas/terapia , Encaminhamento e Consulta/economia , Encaminhamento e Consulta/organização & administração , Encaminhamento e Consulta/estatística & dados numéricos , Medição de Risco/métodos
9.
J Med Internet Res ; 22(8): e22033, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32750010

RESUMO

BACKGROUND: The coronavirus disease (COVID-19) pandemic has resulted in significant morbidity and mortality; large numbers of patients require intensive care, which is placing strain on health care systems worldwide. There is an urgent need for a COVID-19 disease severity assessment that can assist in patient triage and resource allocation for patients at risk for severe disease. OBJECTIVE: The goal of this study was to develop, validate, and scale a clinical decision support system and mobile app to assist in COVID-19 severity assessment, management, and care. METHODS: Model training data from 701 patients with COVID-19 were collected across practices within the Family Health Centers network at New York University Langone Health. A two-tiered model was developed. Tier 1 uses easily available, nonlaboratory data to help determine whether biomarker-based testing and/or hospitalization is necessary. Tier 2 predicts the probability of mortality using biomarker measurements (C-reactive protein, procalcitonin, D-dimer) and age. Both the Tier 1 and Tier 2 models were validated using two external datasets from hospitals in Wuhan, China, comprising 160 and 375 patients, respectively. RESULTS: All biomarkers were measured at significantly higher levels in patients who died vs those who were not hospitalized or discharged (P<.001). The Tier 1 and Tier 2 internal validations had areas under the curve (AUCs) of 0.79 (95% CI 0.74-0.84) and 0.95 (95% CI 0.92-0.98), respectively. The Tier 1 and Tier 2 external validations had AUCs of 0.79 (95% CI 0.74-0.84) and 0.97 (95% CI 0.95-0.99), respectively. CONCLUSIONS: Our results demonstrate the validity of the clinical decision support system and mobile app, which are now ready to assist health care providers in making evidence-based decisions when managing COVID-19 patient care. The deployment of these new capabilities has potential for immediate impact in community clinics and sites, where application of these tools could lead to improvements in patient outcomes and cost containment.


Assuntos
Betacoronavirus/patogenicidade , Redes Comunitárias/normas , Infecções por Coronavirus/epidemiologia , Coronavirus/patogenicidade , Sistemas de Apoio a Decisões Clínicas/normas , Pneumonia Viral/epidemiologia , COVID-19 , Feminino , Humanos , Masculino , Pandemias , SARS-CoV-2
10.
medRxiv ; 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32511607

RESUMO

SARS-CoV-2 is the virus that causes coronavirus disease (COVID-19) which has reached pandemic levels resulting in significant morbidity and mortality affecting every inhabited continent. The large number of patients requiring intensive care threatens to overwhelm healthcare systems globally. Likewise, there is a compelling need for a COVID-19 disease severity test to prioritize care and resources for patients at elevated risk of mortality. Here, an integrated point-of-care COVID-19 Severity Score and clinical decision support system is presented using biomarker measurements of C-reactive protein (CRP), N-terminus pro B type natriuretic peptide (NT-proBNP), myoglobin (MYO), D-dimer, procalcitonin (PCT), creatine kinase-myocardial band (CK-MB), and cardiac troponin I (cTnI). The COVID-19 Severity Score combines multiplex biomarker measurements and risk factors in a statistical learning algorithm to predict mortality. The COVID-19 Severity Score was trained and evaluated using data from 160 hospitalized COVID-19 patients from Wuhan, China. Our analysis finds that COVID-19 Severity Scores were significantly higher for the group that died versus the group that was discharged with median (interquartile range) scores of 59 (40-83) and 9 (6-17), respectively, and area under the curve of 0.94 (95% CI 0.89-0.99). These promising initial models pave the way for a point-of-care COVID-19 Severity Score system to impact patient care after further validation with externally collected clinical data. Clinical decision support tools for COVID-19 have strong potential to empower healthcare providers to save lives by prioritizing critical care in patients at high risk for adverse outcomes.

11.
Lab Chip ; 20(12): 2075-2085, 2020 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-32490853

RESUMO

SARS-CoV-2 is the virus that causes coronavirus disease (COVID-19) which has reached pandemic levels resulting in significant morbidity and mortality affecting every inhabited continent. The large number of patients requiring intensive care threatens to overwhelm healthcare systems globally. Likewise, there is a compelling need for a COVID-19 disease severity test to prioritize care and resources for patients at elevated risk of mortality. Here, an integrated point-of-care COVID-19 Severity Score and clinical decision support system is presented using biomarker measurements of C-reactive protein (CRP), N-terminus pro B type natriuretic peptide (NT-proBNP), myoglobin (MYO), D-dimer, procalcitonin (PCT), creatine kinase-myocardial band (CK-MB), and cardiac troponin I (cTnI). The COVID-19 Severity Score combines multiplex biomarker measurements and risk factors in a statistical learning algorithm to predict mortality. The COVID-19 Severity Score was trained and evaluated using data from 160 hospitalized COVID-19 patients from Wuhan, China. Our analysis finds that COVID-19 Severity Scores were significantly higher for the group that died versus the group that was discharged with median (interquartile range) scores of 59 (40-83) and 9 (6-17), respectively, and area under the curve of 0.94 (95% CI 0.89-0.99). Although this analysis represents patients with cardiac comorbidities (hypertension), the inclusion of biomarkers from other pathophysiologies implicated in COVID-19 (e.g., D-dimer for thrombotic events, CRP for infection or inflammation, and PCT for bacterial co-infection and sepsis) may improve future predictions for a more general population. These promising initial models pave the way for a point-of-care COVID-19 Severity Score system to impact patient care after further validation with externally collected clinical data. Clinical decision support tools for COVID-19 have strong potential to empower healthcare providers to save lives by prioritizing critical care in patients at high risk for adverse outcomes.


Assuntos
Infecções por Coronavirus/diagnóstico , Sistemas de Apoio a Decisões Clínicas/organização & administração , Pneumonia Viral/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Algoritmos , Biomarcadores , COVID-19 , Comorbidade , Infecções por Coronavirus/fisiopatologia , Cuidados Críticos , Humanos , Processamento de Imagem Assistida por Computador , Imunoensaio/métodos , Aprendizado de Máquina , Pandemias , Pneumonia Viral/fisiopatologia , Valor Preditivo dos Testes , Fatores de Risco , Índice de Gravidade de Doença , Software , Resultado do Tratamento
12.
Cancer Cytopathol ; 128(3): 207-220, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32032477

RESUMO

BACKGROUND: The effective detection and monitoring of potentially malignant oral lesions (PMOL) are critical to identifying early-stage cancer and improving outcomes. In the current study, the authors described cytopathology tools, including machine learning algorithms, clinical algorithms, and test reports developed to assist pathologists and clinicians with PMOL evaluation. METHODS: Data were acquired from a multisite clinical validation study of 999 subjects with PMOLs and oral squamous cell carcinoma (OSCC) using a cytology-on-a-chip approach. A machine learning model was trained to recognize and quantify the distributions of 4 cell phenotypes. A least absolute shrinkage and selection operator (lasso) logistic regression model was trained to distinguish PMOLs and cancer across a spectrum of histopathologic diagnoses ranging from benign, to increasing grades of oral epithelial dysplasia (OED), to OSCC using demographics, lesion characteristics, and cell phenotypes. Cytopathology software was developed to assist pathologists in reviewing brush cytology test results, including high-content cell analyses, data visualization tools, and results reporting. RESULTS: Cell phenotypes were determined accurately through an automated cytological assay and machine learning approach (99.3% accuracy). Significant differences in cell phenotype distributions across diagnostic categories were found in 3 phenotypes (type 1 ["mature squamous"], type 2 ["small round"], and type 3 ["leukocytes"]). The clinical algorithms resulted in acceptable performance characteristics (area under the curve of 0.81 for benign vs mild dysplasia and 0.95 for benign vs malignancy). CONCLUSIONS: These new cytopathology tools represent a practical solution for rapid PMOL assessment, with the potential to facilitate screening and longitudinal monitoring in primary, secondary, and tertiary clinical care settings.


Assuntos
Carcinoma de Células Escamosas/diagnóstico , Citodiagnóstico/métodos , Detecção Precoce de Câncer/métodos , Programas de Rastreamento/métodos , Neoplasias Bucais/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Adulto , Algoritmos , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/metabolismo , Citodiagnóstico/instrumentação , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Neoplasias Bucais/metabolismo , Estudos Prospectivos , Curva ROC , Software
13.
Oral Oncol ; 92: 6-11, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31010626

RESUMO

OBJECTIVES: The diagnosis and management of oral cavity cancers are often complicated by the uncertainty of which patients will undergo malignant transformation, obligating close surveillance over time. However, serial biopsies are undesirable, highly invasive, and subject to inherent issues with poor inter-pathologist agreement and unpredictability as a surrogate for malignant transformation and clinical outcomes. The goal of this study was to develop and evaluate a Multivariate Analytical Risk Index for Oral Cancer (MARIO) with potential to provide non-invasive, sensitive, and quantitative risk assessments for monitoring lesion progression. MATERIALS AND METHODS: A series of predictive models were developed and validated using previously recorded single-cell data from oral cytology samples resulting in a "continuous risk score". Model development consisted of: (1) training base classification models for each diagnostic class pair, (2) pairwise coupling to obtain diagnostic class probabilities, and (3) a weighted aggregation resulting in a continuous MARIO. RESULTS AND CONCLUSIONS: Diagnostic accuracy based on optimized cut-points for the test dataset ranged from 76.0% for Benign, to 82.4% for Dysplastic, 89.6% for Malignant, and 97.6% for Normal controls for an overall MARIO accuracy of 72.8%. Furthermore, a strong positive relationship with diagnostic severity was demonstrated (Pearson's coefficient = 0.805 for test dataset) as well as the ability of the MARIO to respond to subtle changes in cell composition. The development of a continuous MARIO for PMOL is presented, resulting in a sensitive, accurate, and non-invasive method with potential for enabling monitoring disease progression, recurrence, and the need for therapeutic intervention of these lesions.


Assuntos
Citodiagnóstico , Neoplasias Bucais/diagnóstico , Biópsia , Citodiagnóstico/instrumentação , Citodiagnóstico/métodos , Citodiagnóstico/normas , Humanos , Dispositivos Lab-On-A-Chip , Análise Multivariada , Gradação de Tumores , Estadiamento de Neoplasias , Reprodutibilidade dos Testes , Medição de Risco
14.
Micromachines (Basel) ; 10(4)2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995728

RESUMO

The McDevitt group has sustained efforts to develop a programmable sensing platform that offers advanced, multiplexed/multiclass chem-/bio-detection capabilities. This scalable chip-based platform has been optimized to service real-world biological specimens and validated for analytical performance. Fashioned as a sensor that learns, the platform can host new content for the application at hand. Identification of biomarker-based fingerprints from complex mixtures has a direct linkage to e-nose and e-tongue research. Recently, we have moved to the point of big data acquisition alongside the linkage to machine learning and artificial intelligence. Here, exciting opportunities are afforded by multiparameter sensing that mimics the sense of taste, overcoming the limitations of salty, sweet, sour, bitter, and glutamate sensing and moving into fingerprints of health and wellness. This article summarizes developments related to the electronic taste chip system evolving into a platform that digitizes biology and affords clinical decision support tools. A dynamic body of literature and key review articles that have contributed to the shaping of these activities are also highlighted. This fully integrated sensor promises more rapid transition of biomarker panels into wide-spread clinical practice yielding valuable new insights into health diagnostics, benefiting early disease detection.

15.
Transl Oncol ; 11(2): 477-486, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29481998

RESUMO

Fanconi anemia (FA) is a hereditary genomic instability disorder with a predisposition to leukemia and oral squamous cell carcinomas (OSCCs). Hematopoietic stem cell transplantation (HSCT) facilitates cure of bone marrow failure and leukemia and thus extends life expectancy in FA patients; however, survival of hematologic malignancies increases the risk of OSCC in these patients. We developed a "cytology-on-a-chip" (COC)-based brush biopsy assay for monitoring patients with oral potentially malignant disorders (OPMDs). Using this COC assay, we measured and correlated the cellular morphometry and Minichromosome Maintenance Complex Component 2 (MCM2) expression levels in brush biopsy samples of FA patients' OPMD with clinical risk indicators such as loss of autofluorescence (LOF), HSCT status, and mutational profiles identified by next-generation sequencing. Statistically significant differences were found in several cytology measurements based on high-risk indicators such as LOF-positive and HSCT-positive status, including greater variation in cell area and chromatin distribution, higher MCM2 expression levels, and greater numbers of white blood cells and cells with enlarged nuclei. Higher OPMD risk scores were associated with differences in the frequency of nuclear aberrations and differed based on LOF and HSCT statuses. We identified mutation of FAT1 gene in five and NOTCH-2 and TP53 genes in two cases of FA patients' OPMD. The high-risk OPMD of a non-FA patient harbored FAT1, CASP8, and TP63 mutations. Use of COC assay in combination with visualization of LOF holds promise for the early diagnosis of high-risk OPMD. These minimally invasive diagnostic tools are valuable for long-term surveillance of OSCC in FA patients and avoidance of unwarranted scalpel biopsies.

16.
Front Public Health ; 5: 110, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28589118

RESUMO

The lack of standard tools and methodologies and the absence of a streamlined multimarker approval process have hindered the translation rate of new biomarkers into clinical practice for a variety of diseases afflicting humankind. Advanced novel technologies with superior analytical performance and reduced reagent costs, like the programmable bio-nano-chip system featured in this article, have potential to change the delivery of healthcare. This universal platform system has the capacity to digitize biology, resulting in a sensor modality with a capacity to learn. With well-planned device design, development, and distribution plans, there is an opportunity to translate benchtop discoveries in the genomics, proteomics, metabolomics, and glycomics fields by transforming the information content of key biomarkers into actionable signatures that can empower physicians and patients for a better management of healthcare. While the process is complicated and will take some time, showcased here are three application areas for this flexible platform that combines biomarker content with minimally invasive or non-invasive sampling, such as brush biopsy for oral cancer risk assessment; serum, plasma, and small volumes of blood for the assessment of cardiac risk and wellness; and oral fluid sampling for drugs of abuse testing at the point of need.

17.
Oral Oncol ; 60: 103-11, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27531880

RESUMO

UNLABELLED: Despite significant advances in surgical procedures and treatment, long-term prognosis for patients with oral cancer remains poor, with survival rates among the lowest of major cancers. Better methods are desperately needed to identify potential malignancies early when treatments are more effective. OBJECTIVE: To develop robust classification models from cytology-on-a-chip measurements that mirror diagnostic performance of gold standard approach involving tissue biopsy. MATERIALS AND METHODS: Measurements were recorded from 714 prospectively recruited patients with suspicious lesions across 6 diagnostic categories (each confirmed by tissue biopsy -histopathology) using a powerful new 'cytology-on-a-chip' approach capable of executing high content analysis at a single cell level. Over 200 cellular features related to biomarker expression, nuclear parameters and cellular morphology were recorded per cell. By cataloging an average of 2000 cells per patient, these efforts resulted in nearly 13 million indexed objects. RESULTS: Binary "low-risk"/"high-risk" models yielded AUC values of 0.88 and 0.84 for training and validation models, respectively, with an accompanying difference in sensitivity+specificity of 6.2%. In terms of accuracy, this model accurately predicted the correct diagnosis approximately 70% of the time, compared to the 69% initial agreement rate of the pool of expert pathologists. Key parameters identified in these models included cell circularity, Ki67 and EGFR expression, nuclear-cytoplasmic ratio, nuclear area, and cell area. CONCLUSIONS: This chip-based approach yields objective data that can be leveraged for diagnosis and management of patients with PMOL as well as uncovering new molecular-level insights behind cytological differences across the OED spectrum.


Assuntos
Dispositivos Lab-On-A-Chip , Monitorização Fisiológica/métodos , Neoplasias Bucais/patologia , Automação , Biópsia/métodos , Feminino , Humanos , Masculino , Estudos Prospectivos
18.
Acc Chem Res ; 49(7): 1359-68, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27380817

RESUMO

The combination of point-of-care (POC) medical microdevices and machine learning has the potential transform the practice of medicine. In this area, scalable lab-on-a-chip (LOC) devices have many advantages over standard laboratory methods, including faster analysis, reduced cost, lower power consumption, and higher levels of integration and automation. Despite significant advances in LOC technologies over the years, several remaining obstacles are preventing clinical implementation and market penetration of these novel medical microdevices. Similarly, while machine learning has seen explosive growth in recent years and promises to shift the practice of medicine toward data-intensive and evidence-based decision making, its uptake has been hindered due to the lack of integration between clinical measurements and disease determinations. In this Account, we describe recent developments in the programmable bio-nanochip (p-BNC) system, a biosensor platform with the capacity for learning. The p-BNC is a "platform to digitize biology" in which small quantities of patient sample generate immunofluorescent signal on agarose bead sensors that is optically extracted and converted to antigen concentrations. The platform comprises disposable microfluidic cartridges, a portable analyzer, automated data analysis software, and intuitive mobile health interfaces. The single-use cartridges are fully integrated, self-contained microfluidic devices containing aqueous buffers conveniently embedded for POC use. A novel fluid delivery method was developed to provide accurate and repeatable flow rates via actuation of the cartridge's blister packs. A portable analyzer instrument was designed to integrate fluid delivery, optical detection, image analysis, and user interface, representing a universal system for acquiring, processing, and managing clinical data while overcoming many of the challenges facing the widespread clinical adoption of LOC technologies. We demonstrate the p-BNC's flexibility through the completion of multiplex assays within the single-use disposable cartridges for three clinical applications: prostate cancer, ovarian cancer, and acute myocardial infarction. Toward the goal of creating "sensors that learn", we have developed and describe here the Cardiac ScoreCard, a clinical decision support system for a spectrum of cardiovascular disease. The Cardiac ScoreCard approach comprises a comprehensive biomarker panel and risk factor information in a predictive model capable of assessing early risk and late-stage disease progression for heart attack and heart failure patients. These marker-driven tests have the potential to radically reduce costs, decrease wait times, and introduce new options for patients needing regular health monitoring. Further, these efforts demonstrate the clinical utility of fusing data from information-rich biomarkers and the Internet of Things (IoT) using predictive analytics to generate single-index assessments for wellness/illness status. By promoting disease prevention and personalized wellness management, tools of this nature have the potential to improve health care exponentially.


Assuntos
Técnicas Biossensoriais/métodos , Nanotecnologia , Sistemas Automatizados de Assistência Junto ao Leito , Área Sob a Curva , Biomarcadores/análise , Técnicas Biossensoriais/instrumentação , Doenças Cardiovasculares/diagnóstico , Telefone Celular , Creatina Quinase Forma MB/análise , Ensaio de Imunoadsorção Enzimática , Humanos , Dispositivos Lab-On-A-Chip , Limite de Detecção , Curva ROC , Troponina I/análise
19.
Bioanalysis ; 8(9): 905-19, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27071710

RESUMO

This perspective highlights the major challenges for the bioanalytical community, in particular the area of lab-on-a-chip sensors, as they relate to point-of-care diagnostics. There is a strong need for general-purpose and universal biosensing platforms that can perform multiplexed and multiclass assays on real-world clinical samples. However, the adoption of novel lab-on-a-chip/microfluidic devices has been slow as several key challenges remain for the translation of these new devices to clinical practice. A pipeline of promising medical microdevice technologies will be made possible by addressing the challenges of integration, failure to compete with cost and performance of existing technologies, requisite for new content, and regulatory approval and clinical adoption.


Assuntos
Dispositivos Lab-On-A-Chip , Sistemas Automatizados de Assistência Junto ao Leito , Desenho de Equipamento , Humanos , Dispositivos Lab-On-A-Chip/economia , Legislação de Dispositivos Médicos , Técnicas Analíticas Microfluídicas/economia , Técnicas Analíticas Microfluídicas/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito/economia
20.
JACC Basic Transl Sci ; 1(1-2): 73-86, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26977455

RESUMO

Point-of-care technologies (POC or POCT) are enabling innovative cardiovascular diagnostics that promise to improve patient care across diverse clinical settings. The National Heart, Lung, and Blood Institute convened a working group to discuss POCT in cardiovascular medicine. The multidisciplinary working group, which included clinicians, scientists, engineers, device manufacturers, regulatory officials, and program staff, reviewed the state of the POCT field; discussed opportunities for POCT to improve cardiovascular care, realize the promise of precision medicine, and advance the clinical research enterprise; and identified barriers facing translation and integration of POCT with existing clinical systems. A POCT development roadmap emerged to guide multidisciplinary teams of biomarker scientists, technologists, health care providers, and clinical trialists as they: 1) formulate needs assessments; 2) define device design specifications; 3) develop component technologies and integrated systems; 4) perform iterative pilot testing; and 5) conduct rigorous prospective clinical testing to ensure that POCT solutions have substantial effects on cardiovascular care.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA